JHJ-55-58.final 10/11/05 4:49 PM Page 57

(FAS) dean William C. Kirby wrote to his news. Faculty of Arts and Sciences tended into fiscal year 2007. The rate of increase in payout may be ex-

4.5 to 5.0 percent of market value, the re-

distribution rate down to 4.3 percent, was a mathematical approach to the theory of light explaining these effects: “That’s really all there is to it.” (Background papers are available at http://nobelprize.org.)

In his twenty-fifth anniversary class report, Glauber described his work as “papers on various aspects of quantum theory and nuclear theory.” And how. Twenty-five years later, he reported taking up undergraduate teaching after many years of focusing only at the graduate level. He remains so engaged, offering a freshman seminar, “The Atomic Nucleus on the World Stage” this fall, and the popular Core course, Science A-29, “The Nature of Light and Matter,” next spring. Tenured in 1956, he is the longest-serving current tenured member of the Faculty of Arts and Sciences.

Separately, on October 5, MIT professor Richard R. Schrock, Ph.D. ’72, was named a co-recipient of the Nobel Prize in chemistry.

Glauber told reporters he was a child tinkerer who built a telescope and then a spectroscope, and found himself seduced by physics as a young teenager. At Harvard, he devoured the mathematics curriculum (so much so that he worked on the Manhattan Project as an undergraduate, making calculations about critical mass and the efficiency of atomic explosions) and discovered “all sorts of thrilling things.” With the invention of the laser, new experiments made it possible, and essential, to go beyond the prevailing wave theory and to encompass the “granular quality” of photons, better accounting for the nature and behavior of light. His work, Glauber said, was a mathematical approach to the theory of light explaining these effects: “That’s really all there is to it.” (Background papers are available at http://nobelprize.org.)

In his twenty-fifth anniversary class report, Glauber described his work as “papers on various aspects of quantum theory and nuclear theory.” And how. Twenty-five years later, he reported taking up undergraduate teaching after many years of focusing only at the graduate level. He remains so engaged, offering a freshman seminar, “The Atomic Nucleus on the World Stage” this fall, and the popular Core course, Science A-29, “The Nature of Light and Matter,” next spring. Tenured in 1956, he is the longest-serving currently active tenured member of the Faculty of Arts and Sciences.

Separately, on October 5, MIT professor Richard R. Schrock, Ph.D. ’72, was named a co-recipient of the Nobel Prize in chemistry.

Glauber told reporters he was a child tinkerer who built a telescope and then a spectroscope, and found himself seduced by physics as a young teenager. At Harvard, he devoured the mathematics curriculum (so much so that he worked on the Manhattan Project as an undergraduate, making calculations about critical mass and the efficiency of atomic explosions) and discovered “all sorts of thrilling things.” With the invention of the laser, new experiments made it possible, and essential, to go beyond the prevailing wave theory and to encompass the “granular quality” of photons, better accounting for the nature and behavior of light. His work, Glauber said, was a mathematical approach to the theory of light explaining these effects: “That’s really all there is to it.” (Background papers are available at http://nobelprize.org.)

In his twenty-fifth anniversary class report, Glauber described his work as “papers on various aspects of quantum theory and nuclear theory.” And how. Twenty-five years later, he reported taking up undergraduate teaching after many years of focusing only at the graduate level. He remains so engaged, offering a freshman seminar, “The Atomic Nucleus on the World Stage” this fall, and the popular Core course, Science A-29, “The Nature of Light and Matter,” next spring. Tenured in 1956, he is the longest-serving currently active tenured member of the Faculty of Arts and Sciences.

Separately, on October 5, MIT professor Richard R. Schrock, Ph.D. ’72, was named a co-recipient of the Nobel Prize in chemistry.

In some quarters, that would be wel-

come news. Faculty of Arts and Sciences (FAS) dean William C. Kirby wrote to his colleagues on September 23 that growth in the professorial ranks—from 636 in January 2003 to a projected 700 by this New Year’s—had led him to at least tap on the brakes. The growth, while long sought, has “occurred even more rapidly...than we had anticipated in our academic and financial planning.” Accordingly, he intended to “ensure that our numbers remain con-

stant or grow more moderately” this year.

That “financial planning” refers in part to physical facilities: laboratory buildings for scientists, other new faculty offices, library and other renovations, spending on student cultural, extracurricular, and social spaces, and more—a construction budget alone of perhaps three-quarters of

pency costs rose 11.4 percent, to $296 mil-

lion, as new facilities came on line and energy and security costs increased; depreciation increased in step, rising $14 million to $107 million. Undergirding the building boom, debt outstanding increased by a quarter-billion dollars, to more than $2.8 billion, with cash interest payments rising to $95 million in 2005, versus $77 million in the prior fiscal year.

Overall, Berman said, Harvard’s 2005 results reflected two prior years of fiscal caution, when weak investment results prompted the Corporation to curtail distributions from the endowment, the single largest source of operating revenue. Now, after the endowment distribution increased 5.8 percent in 2005 (with a planned aggregate rise of 8 percent in the current year), Berman is convinced that spending on faculty growth, financial aid, and construction “will rise faster in 2006.” And because back-to-back “great” endowment returns (see page 58) have pushed the distribution rate down to 4.3 percent, below the Corporation’s long-term goal of 4.5 to 5.0 percent of market value, the recent rate of increase in payout may be extended into fiscal year 2007.

In some quarters, that would be welcome news. Faculty of Arts and Sciences (FAS) dean William C. Kirby wrote to his colleagues on September 23 that growth in the professorial ranks—from 636 in January 2003 to a projected 700 by this New Year’s—had led him to at least tap on the brakes. The growth, while long sought, has “occurred even more rapidly...than we had anticipated in our academic and financial planning.” Accordingly, he intended to “ensure that our numbers remain con-

stant or grow more moderately” this year.

That “financial planning” refers in part to physical facilities: laboratory buildings for scientists, other new faculty offices, library and other renovations, spending on student cultural, extracurricular, and social spaces, and more—a construction budget alone of perhaps three-quarters of

Premier Physicist

Mallinckrodt professor of physics Roy J. Glauber ’45, Ph.D. ’49, has a new title: Nobel laureate. The Royal Swedish Academy of Sciences conferred the prize on October 4, recognizing Glauber for his elucidation of the quantum theory of light. Cowinners John L. Hall, of the University of Colorado, and Theodor W. Hänsch, of the Max Planck Institute, were cited for developing highly precise laser-based spectroscopy; Glauber praised the “exquisite ingenuity” of some of their experiments.

Glauber told reporters he was a child tinkerer who built a telescope and then a spectroscope, and found himself seduced by physics as a young teenager. At Harvard, he devoured the mathematics curriculum (so much so that he worked on the Manhattan Project as an undergraduate, making calculations about critical mass and the efficiency of atomic explosions) and discovered “all sorts of thrilling things.” With the invention of the laser, new experiments made it possible, and essential, to go beyond the prevailing wave theory and to encompass the “granular quality” of photons, better accounting for the nature and behavior of light. His work, Glauber said, was a mathematical approach to the theory of light explaining these effects: “That’s really all there is to it.” (Background papers are available at http://nobelprize.org.)

In his twenty-fifth anniversary class report, Glauber described his work as “papers on various aspects of quantum theory and nuclear theory.” And how. Twenty-five years later, he reported taking up undergraduate teaching after many years of focusing only at the graduate level. He remains so engaged, offering a freshman seminar, “The Atomic Nucleus on the World Stage” this fall, and the popular Core course, Science A-29, “The Nature of Light and Matter,” next spring. Tenured in 1956, he is the longest-serving currently active tenured member of the Faculty of Arts and Sciences.

Separately, on October 5, MIT professor Richard R. Schrock, Ph.D. ’72, was named a co-recipient of the Nobel Prize in chemistry.

Generous Givers

Donations to the University totaled $590 million in the fiscal year ended June 30—the second highest sum in Harvard’s history, according to Donella M. Rapier, vice president for alumni affairs and development. The previous peak, $658 million in 2001, came at the end of the $2.6-billion University Campaign. (Unlike the higher figures published in Harvard’s annual financial report, the development-office figures discount capital gifts for life income funds to their present value.)

Rapier cited the strength of Harvard Business School’s capital campaign, which accounted for more than one-fifth of the gifts recorded. Harvard Law School’s campaign continues on track, and the Faculty of Arts and Sciences (FAS) had steady results. “The sciences have engendered a lot of interest,” she said, with $30 million raised for the stem-cell institute and 10 professorships funded in the Division of Engineering and Applied Sciences, which held a “chair challenge.” Donor interest in financial aid focused on the initiative for low-income undergraduates and public-service-oriented graduate schools (such as education, government, and public health).

The timing of a broad capital campaign has evidently been pushed back. Rapier cited incomplete academic planning in FAS, which is reworking the College curriculum; in “very complex” crosscutting science initiatives; and in the graduate schools with new deans (design, government) or interim leadership (education). As for putting a price tag on existing programs and new ambitions in Allston, she said, “The hardest part is the final decisions on what’s in and what’s not.”